郑州大学陈卫华AFM:Fe-N-C键电催化驱动可靠的SEI和快速的动力学

郑州大学陈卫华AFM:Fe-N-C键电催化驱动可靠的SEI和快速的动力学
磷具有高容量和低氧化还原电位的特点,这使其成为未来钠离子电池的一种有前景的负极材料。然而,其实际应用受限于较差的耐久性和缓慢的动力学。
郑州大学陈卫华AFM:Fe-N-C键电催化驱动可靠的SEI和快速的动力学
图1 P/Fe-N-C的结构和形态特征
郑州大学陈卫华等提出了一种创新的原位电化学自驱动策略,将磷纳米晶体(≈10 nm)嵌入富含Fe-N-C的三维碳框架(P/Fe-N-C)中。
作为钠离子电池的负极,它在比容量(0.4 A g-1时为1300 mAh g-1)、循环稳定性(20 A g-1时循环10000次后容量保持率为72%)和倍率性能(100 A g-1时为267 mAh g-1)方面具有竞争力。此外,在软包电池中进行了应用测试,其显示出220 Wh kg-1的高能量密度。
郑州大学陈卫华AFM:Fe-N-C键电催化驱动可靠的SEI和快速的动力学
图2 电化学性能研究
通过TEM和XPS研究原位电化学自驱动过程,作者发现FeP在第一次充电过程中不可逆地转化为P和Fe,Fe在随后的氧化还原反应中缺失,从根本上改变了氧化还原反应,从FeP/Na3P变成了P/Na3P。
此外,根据实验结果(XPS、TEM和原位DEMS)和理论计算,合理地提出了Fe-N-C在电化学过程中的协同电催化机理(界面催化和P-P解离催化)。具体来说,电极上形成的Fe-N-C催化位点加速了电解液中氟的释放,从而增强了Na+传导的SEI。
此外,Fe-N-C催化位点的存在可提高NaXP的吸附能,有效催化P还原为Na3P,改善P负极的氧化还原反应动力学。因此,P/Fe-N-C复合材料具有优异的循环稳定性、高放电容量和快速倍率能力,这种协同催化机制为设计高容量充电电池电极提供了新的思路。
郑州大学陈卫华AFM:Fe-N-C键电催化驱动可靠的SEI和快速的动力学
图3 理论计算
Electrocatalysis of Fe-N-C Bonds Driving Reliable Interphase and Fast Kinetics for Phosphorus Anode in Sodium-Ion Batteries. Advanced Functional Materials 2023. DOI: 10.1002/adfm.202305803

原创文章,作者:科研小搬砖,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/09/25/34b49c6299/

(0)

相关推荐