采用高能负极材料(如硅基和硅衍生物材料)制备的可充锂基电池被认为是满足新兴市场严格要求的可行方案,包括电动汽车和电网存储,因为与当代锂离子电池相比,其能量密度更高。高能负极上的固体电解质界面层(SEI)的坚固性对于实现电池的长期和稳定循环至关重要。中科院物理所黄学杰、华中科技大学张恒等提出了一种新型的设计正极添加剂(DCA),即正极上的超薄元素硫涂层,以用于在各种类型的高能负极上原位形成薄而坚固的SEI层。图1. 用于高能负极的DCA的示意这一策略主要是基于以下考虑而构思的:(1)通过还原反应,元素硫可原位转化为多硫化物,这可能引发环状碳酸酯的开环聚合(例如,碳酸乙烯酯(EC))并在高能负极表面构建弹性SEI层;(2)通过氧化反应,元素硫可作为形成烷基硫酸盐(R-OSO2OLi)的前体,这有助于机械稳定负极-电解质界面并促进Li+阳离子的快速传输;(3)与含硫电解液添加剂(如 ES、PS 和 DTD)相比,元素硫易于以低成本获得,这确保了它们在工业水平上的实际应用。因此,通过在正极中引入少量的元素硫,元素硫在与碳酸乙烯酯(EC)的反应下,经历了还原和氧化的途径,生成了类似聚环氧乙烷(PEO)的聚合物和烷基硫酸锂(R-OSO2OLi)。结果,在负极-电解质界面新产生的物种可以有效地缓解充电过程中的体积膨胀,并形成导电网络,快速传输Li+阳离子,这对硅基材料(如SiC450和SiC900)和硅衍生物负极材料(如理论容量为1608 mAh g-1的Si-Sn合金)都很有效。图2. SiC||DCA-LFP电池中DCA的化学性质受益于上述优势,仅用0.5wt%的DCS元素硫,SiC450||DCA-LFP、SiC900||DCA-LFP和Si-Sn合金||DCA-LFP电池在100次循环后,容量都分别增加了14.1、22.9和35.2%,倍率容量在5C下分别增加了19.1、24.4和14.6%。总的来说,作者证明了DCA元素硫在容量保持、倍率性能、普遍适用性、成本降低和低电阻等五个方面具有综合优势。更具突破性的是,这种利用DCA驯服SEI的新方法为未来高能锂基充电电池的界面设计提供了新的机会。图3. 采用DCA的电池的电化学性能Designer Cathode Additive for Stable Interphases on High-Energy Anodes. Journal of the American Chemical Society 2022. DOI: 10.1021/jacs.2c04124