npj Comput. Mater.: 自动DFT+机器学习模拟Ni3Al基合金的反相畴界能

npj Comput. Mater.: 自动DFT+机器学习模拟Ni3Al基合金的反相畴界能
反相畴界(APB)是平面缺陷,在强化镍基高温合金中起着关键作用,它们对合金成分的敏感性为合金设计提供了灵活的调整参数。
npj Comput. Mater.: 自动DFT+机器学习模拟Ni3Al基合金的反相畴界能
在此,美国加州大学伯克利分校Mark Asta、劳伦斯利弗莫尔国家实验室Timofey Frolov等人报道了一个计算工作流程以提供足够的数据来训练机器学习(ML)模型,从而自动研究成分对Ni3Al基合金中(111)APB能(记为γ111)的影响。作者通过创建一个计算工作流程来自动化DFT计算,最终生成了丰富的数据(包括溶质位点偏好、γ111及物理上有意义的特征),从而实现对APB能的化学贡献的数据驱动评估。
具体而言,对于每个三元物种,作者首先使用PyDII计算其亚晶格偏好,然后使用该预测来使用ATAT构建模型超晶胞。接下来,基于VASP进行DFT计算以获得γ111。最后,使用在scikit-learn中实现的ML技术来分析数据中的相关性并为γ111构建预测性ML模型。
npj Comput. Mater.: 自动DFT+机器学习模拟Ni3Al基合金的反相畴界能
图1. γ111成分依赖性的代表性曲线
研究表明,PyDII预测Co和Cr是位置偏好变化最大的两个物种。对于Co,可将其行为归类为更偏好Ni亚晶格;对于Cr,PyDII预测对Al亚晶格的偏好非常强烈。DFT结果还表明,几种元素表现出对γ111的非单调浓度依赖性,这可能对合金设计产生重要影响。在d区元素中,Ta可能是在高浓度下使γ111最大化的元素。
此外,用于分析γ111成分依赖性的随机森林(RF)模型实现了0.033 J m-2的五倍交叉验证误差,R2 为 0.753。进一步,作者通过预测商业高温合金中的APB能证明了RF模型的可转移性与普适性。总之,这项研究表明高通量计算和ML之间的协同作用为探索广阔的合金成分空间提供了机会,并加快了合金应用的发展进程。
npj Comput. Mater.: 自动DFT+机器学习模拟Ni3Al基合金的反相畴界能
图2. RF模型结果
Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning, npj Computational Materials 2022. DOI: 10.1038/s41524-022-00755-1

原创文章,作者:v-suan,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/11/7938719d1f/

(0)

相关推荐