浙大高翔/张霄JMCA:机器学习加速识别用于低温NH3-SCR的高性能催化剂 2023年10月12日 下午10:03 • 头条, 干货, 顶刊 • 阅读 25 通过反复试验筛选催化剂会消耗大量时间和资源。机器学习(ML)是一种先进的人工智能技术,近年来在许多科学和工业领域得到广泛应用,可以根据文献中的实验数据加速最佳催化剂的筛选。 在此,浙江大学高翔教授、张霄研究员等人利用一系列(8种)ML算法来辅助设计低温选择性催化还原(SCR)催化剂。为了构建ML模型,作者从2000多个文献报告中提取数据,建立了一个SCR催化剂数据库并在此框架下量化了输入催化剂和反应参数的重要性。 采用决定系数和均方根误差评估ML模型,其中极端随机树回归(ETR)在预测催化性能方面表现最好。此外,作者还计算了特征重要性分数,以找出哪些特征对预测催化剂性能有很大影响。 图1. 八种机器学习方法的预测性能评估 结果表明,为了开发优良的低温SCR催化剂,需要使用氧化能力强的元素,如 Mn 作为活性成分。催化剂必须具有足够大的比表面积,以尽可能分散活性组分。 通过ML方法预测 Mn-Ce-M(M = Co、Cu 和 Fe)混合氧化物系统是一种很有前途的SCR催化剂,实验进一步证明了这一点,在较宽的温度范围(150~300℃)内,使用 Mn–Ce–Co催化剂的NO转化率大于 80%。 图2. 特征重要性分数计算 图3. 机器学习预测值与实验值的比较 Accelerated identification of high-performance catalysts for low-temperature NH3-SCR by machine learning, Journal of Materials Chemistry A 2021. DOI: 10.1039/D1TA06772A 原创文章,作者:科研小搬砖,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/12/e4410c069f/ 电池 赞 (0) 0 生成海报 相关推荐 牛人“吵架”也能发Nature:合成化学VS合成生物学到底谁更牛? 2023年10月15日 陈军院士,五天内连发JACS和Angew.! 2024年3月4日 山大Nature子刊:缩聚反应辅助合成CdSe/CdS纳米棒,实现高效光催化CO2还原 2022年11月17日 Renew. Sust. Energ. Rev.:锂离子电池热失控的缓解策略 2023年10月29日 30周年!香港城市大学AM特刊! 2024年3月29日 继年初首篇Nature后,南大施毅教授/潘力佳教授联合余桂华教授再发Nature Sustainability! 2023年12月22日