北京时间2023年10月4日下午,瑞典皇家科学院宣布,将2023年诺贝尔化学奖授予蒙吉·G·巴文迪(Moungi G. Bawendi)、路易斯·E·布鲁斯(Louis E. Brus)和阿列克谢·伊基莫夫(Alexey I. Ekimov),以表彰他们在量子点的发现和合成方面的贡献。具有半导体特性的碳量子点在光催化领域有潜在应用。近日,上海大学王亮课题组利用长波发射碳量子点(CQD)和石墨氮化碳(CN)作为模型光催化剂,在制备在共价异质结光催化剂合成及其光催化CO2还原上取得重要进展。相关成果以“Amide Covalent Bonding Engineering in Heterojunction for Efficient Solar-Driven CO2 Reduction”发表在纳米材料科学领域期刊《ACS Nano》(影响因子为17.1)。光催化异质结催化剂中的连接方式对材料界面上的电荷转移速率有重要影响,是影响光催化性能的决速步骤。本研究以非金属石墨氮化碳(CN)和低成本碳量子点(CQD)作为反应前驱体,采用简单的EDC/NHS辅助连接策略合成了酰胺键合的CN-CQD异质结光催化剂,表现出良好的光催化CO2还原性能。该研究在开发相关的共价相互作用光催化剂方面取得了突破,为共价连接异质结构催化剂的设计提供了指导方案。研究背景太阳能驱动的CO2转化为高值的化学品或燃料,如CO、CH4和HCOOH,以可持续的方式解决环境挑战和能源危机,是一种很有前途的战略。然而,大多数光催化剂的催化效率低和选择性不足仍然是主要的挑战,限制了光催化CO2还原的实际应用。异质结构已被证明可以通过建立合适的能带结构和新的电子传递途径,在设计的催化剂中有效地促进电荷分离,从而提高光催化性能。异质结中的连接方式对材料界面上的电荷转移速率有重要影响,是影响光催化性能的关键因素。以往的研究主要集中在非共价相互作用上,如范德华力、静电吸引、π-π共轭和氢键。共价键可以提供增强的稳定性和优越的光电子传输特性,并产生强大的异质结,却仍然是一个未开发的领域。因此,构筑共价连接的异质结界面,对合成高效异质结光催化剂至关重要。图文导读I. CN-CQD异质结制备机理