汉阳大学Mater. Today: 电动汽车用无钴层状镍锰氧化物正极的内在缺陷

汉阳大学Mater. Today: 电动汽车用无钴层状镍锰氧化物正极的内在缺陷
无钴Li[NixMn1-x]O2(NM)正极由于其成本竞争力和循环稳定性而受到广泛关注,然而富镍无钴NM正极尚未得到广泛研究,其低温性能不佳的原因仍不清楚。
汉阳大学Mater. Today: 电动汽车用无钴层状镍锰氧化物正极的内在缺陷
在此,韩国汉阳大学Yang-Kook Sun等人比较了无钴Li[NixMn1-x]O2(NM)和常规Li[NixCoyMn1-x-y]O2(NCM)正极(x = 0.8和0.9)在不同温度下的基本性质和电化学性能。尽管在升高的工作温度下,无钴NM正极的容量和循环稳定性与NCM正极相当,但其低温性能明显不如NCM正极,这与其组成化学决定的固有特性有关。
其中Ni含量较高的正极低温性能优于Ni含量较低的正极,然而由于Ni无法发挥Co的作用,因此用Ni完全取代Co会对性能产生不利影响。Co的缺失不仅增加了锂层中阻碍扩散的阳离子无序,而且降低了其离子扩散(DLi+)对低温的耐受性,导致在高倍率和低温下的性能较差。然而,目前尚不清楚无钴NM正极的DLi+下降是否归因于较高程度的阳离子混合,需要进一步研究低温下无钴NM正极DLi+下降的原因。

汉阳大学Mater. Today: 电动汽车用无钴层状镍锰氧化物正极的内在缺陷

图1. NM和NCM正极不同温度下的电化学性能
此外,为了提高无钴层状氧化物正极的实际可行性,有必要解决其低温性能差的严重弱点。其中,增加Ni含量可以提高其电化学性能,然而这种策略降低了其成本竞争力并导致循环不稳定。与富镍NCA/NCM正极类似,可以探索各种掺杂/涂层策略来提高无钴富镍NM正极的循环稳定性。减小无钴NM正极的二次粒径可能有效提高其倍率性能,但正极-电解液接触面积的相应增加通常会损害电化学和热稳定性。
相反,应考虑对初级粒子的尺寸和形状进行微观结构改性以构建容易的Li+扩散路径,从而克服无钴层状氧化物正极的主要缺点。否则,开发具有极低Co含量的微结构控制的富镍NCA/NCM正极便是实现具有成本竞争力电动汽车用高性能正极的最可行方法。

汉阳大学Mater. Today: 电动汽车用无钴层状镍锰氧化物正极的内在缺陷

图2. NM和NCM正极倍率性能差异的原因
Intrinsic weaknesses of Co-free Ni–Mn layered cathodes for electric vehicles, Materials Today 2022. DOI: 10.1016/j.mattod.2022.03.005

原创文章,作者:v-suan,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/14/87dac9d4dc/

(0)

相关推荐