赵仕俊/吴正刚npj Comput. Mater.: 机器学习指导设计高熵碳化物陶瓷

赵仕俊/吴正刚npj Comput. Mater.: 机器学习指导设计高熵碳化物陶瓷
高熵陶瓷(HEC)在高应力和高温等苛刻条件下显示出巨大的应用潜力。然而,巨大的相空间对新型高性能HEC的合理设计提出了巨大挑战。
赵仕俊/吴正刚npj Comput. Mater.: 机器学习指导设计高熵碳化物陶瓷
在此,香港城市大学赵仕俊教授、湖南大学吴正刚教授等人开发了机器学习(ML)模型来发现高熵碳化物陶瓷(HECC),以基于HECC候选物及其组成二元过渡金属碳化物(TMC的化学属性来预测HECC的单相概率。
利用从DFT计算中获得的前兆信息和参数,训练有素的支持向量机(SVM)和人工神经网络(ANN)模型可以预测其中阳离子来自IV、V或VI族的单相HECC。IV族和V族TMC可以很容易地形成具有改善机械性能的单相HECC,由于VI族金属中的更高价填充,作者预计这些元素的加入可以进一步提高HECC的性能。
赵仕俊/吴正刚npj Comput. Mater.: 机器学习指导设计高熵碳化物陶瓷
图1. ML模型的性能
研究表明,ML模型展示了很高的预测准确度(SVM和ANN模型分别为0.982和0.944)。使用这些训练有素的模型,作者研究了约90个未合成的HECC的单相概率并预测了38个单相 HECC,其中包含来自IV、V和VI族金属的五种阳离子,这些预测与当前的实验结果非常吻合。通过仅对组成前体的特性进行训练,该ML模型能够预测非等原子HECC的相形成概率。
作者进一步建立了跨越整个成分空间的非等原子HECC的相图,通过该相图可以轻松识别单相状态。因此,该研究开发的ML模型可以加速等原子和非等原子HECC的发现,这为沉浸式相空间内的合理HECC设计开辟了道路,从而可以有效地调整HECC的特性。
赵仕俊/吴正刚npj Comput. Mater.: 机器学习指导设计高熵碳化物陶瓷
图2. 不同特征的相对重要性分析
Design high-entropy carbide ceramics from machine learning, npj Computational Materials 2022. DOI: 10.1038/s41524-021-00678-3

原创文章,作者:v-suan,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/15/aeb3d428a5/

(0)

相关推荐