余桂华等人ACS Nano:1.2 mm超厚电极的规模化制备 2023年10月25日 上午11:28 • 头条, 干货, 顶刊 • 阅读 27 具有高面积容量的厚电极是最大化电池能量密度的直接方法,但厚电极的发展同时面临制造挑战和电子/离子传输限制。 美国德克萨斯大学奥斯汀分校余桂华、石溪大学Esther S. Takeuchi等人通过简便、可扩展的模板化相转化方法,构建了具有超高活性材料负载量和高效传输网络的低曲折度LiFePO4(LFP)电极。 相转化是一种用于可规模化生产具有分级孔结构膜的流行方法。所制备的膜通常由三层组成,即浆液和非溶剂界面处的表层,具有指状大孔的中间层,以及浆液和模具界面处的海绵层。当用作电极时,相对致密的表层会干扰电解液渗透和物质传输,导致倍率容量有限,尤其是在厚电极中。 图1 三层LFP电极的形貌和物理性质 通过在相转化之前应用网格并在之后去除它,可以剥离表层,并打开垂直排列的微通道,从而形成几乎穿过电极的开放、均匀的微通道。微通道分级结构不仅大大促进了浸渍电解液中Li+的传输,而且还通过碳化聚合物包裹提供了连续的电子传输网络。此外,由于聚合物在相转化过程中的即时固化,实现了强电极粘附,这支持具有机械坚固性的超厚电极的制备。 受益于结构优势,超厚双层LiFePO4电极(高达 1.2 mm)在高面积负载(高达 100 mg cm-2)下显示出倍率性能和循环稳定性的显著改善。 此外,模拟和原位结构表征也揭示了快速传输动力学。结合可扩展的制备,作者提出的策略为以低成本设计实用的高能量/功率密度电极提供了一种有效的替代方案。 图2 双层和三层LFP电极的电化学性能 Ultrahigh-Capacity and Scalable Architected Battery Electrodes via Tortuosity Modulation. ACS Nano 2021. DOI: 10.1021/acsnano.1c06491 原创文章,作者:科研小搬砖,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/10/25/0e9d59d869/ 电池 赞 (0) 0 生成海报 微信扫码分享 相关推荐 兰州化物所Angew: BiOIO3动态结构和键的演变,增强CO2光还原活性 2024年5月30日 当人工智能遇到DFT,会催化出多少神奇?(Science/Nature子刊) 2023年12月1日 上海交大学Nature子刊:酮协同蒽醌,促进碱性条件下H2O2光合成 2024年4月15日 重磅!清华/北理工,最新Science! 2024年7月30日 尹诗斌教授团队CEJ:强电子耦合效应显著提升大电流密度下Li–CO2电池的循环寿命 2024年4月26日 他,发表Science之后,再发两篇Nature Energy! 2023年10月8日