钠离子电池因其原材料储量丰富,价格低廉,近些年受到了越来越多研究人员的关注。
在诸多钠离子正极材料体系中,层状氧化物因其易合成、综合性能较好等特点,是目前最具应用潜力的体系。
然而由于钠离子质量较大,钠离子电池层状氧化物正极材料的能量密度与锂离子电池层状正极材料有一定差距,进一步提升钠离子电池材料的能量密度是研究人员努力的重要方向。
图1. 常见的钠离子电池正极材料的电压、比容量和比能量的关系。
近两年钠离子电池中的阴离子氧化还原的报道陆续出现,研究人员曾对钠离子电池正极的构效关系进行了深入研究(Nat. Commun., 5, 1501005, 2015; Adv. Mater., 27, 6928-6933, 2015; Adv. Energy Mater., 5, 1501005, 2015等)。
阴离子氧化还原现象首先报道于锂离子电池,即富锂材料,这类材料具有超高的可逆比容量(> 300 mAh/g),其电荷补偿由可变价过渡金属和晶格中的氧离子共同提供(传统的正极材料仅有过渡金属变价),但是晶格氧参与后材料结构变得不稳定(层状相向尖晶石相转变),容量衰减尤其是电压衰减较为严重。
那么钠离子电池层状氧化物正极借助晶格氧离子的氧化还原反应后,其可逆比容量是否可以达到200 mAh/g以上?此外,P2结构层状正极材料是否可以避免类似富锂材料的结构变化呢?
近日,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组博士生容晓晖在研究员胡勇胜、副研究员禹习谦和研究员谷林的指导下,在Cell Press旗下的能源期刊Joule上发表最新研究成果。
研究者基于前期的阴离子氧化还原的研究基础(Joule, 2, 125-140, 2018),设计了结构和组成为P2-Na0.72[Li0.24Mn0.76]O2的钠离子电池正极材料,发现组装的半电池在1.5-4.5 V之间具有~270 mAh/g的超高可逆比容量,能量密度可达700 Wh/kg,是目前已知具有最高能量密度的钠离子电池正极材料。
图2. P2-Na0.72[Li0.24Mn0.76]O2的电化学性能 (a) 0.05C,1.5-4.5 V首周充放电和第二周充电曲线;(b) 0.05C,1.5-4.5 V和2.0-4.5 V循环曲线。
后与美国布鲁克海文国家实验室博士胡恩源和教授杨晓青、法国波尔多大学教授Claude Delmas等深度合作,通过中子散射、同步辐射技术等先进表征手段细致研究了该材料的电荷补偿机制和结构演化过程,并发现了阴离子氧化还原机制不但可以提供额外的容量,还具有稳定钠离子电池层状结构、减小体积应变的作用,这是该材料具有超高比容量的内在原因。
图3. P2-Na0.72[Li0.24Mn0.76]O2的电荷补偿机制 (a) 第一周充放电Mn元素K边的演变;(b) 第二周充电Mn元素K边的演变;(c) P2-Na0.72[Li0.24Mn0.76]O2的电荷补偿机制示意图。
研究发现P2结构具有较大的层间距(相对O3相),能够容忍O-O键长变化带来的晶格畸变;同时较大的层间距能有效抑制充电过程中阳离子向碱金属层迁移(富锂材料中发生的层状向尖晶石结构相变),保持稳定的层状结构,从而使得氧离子的氧化还原反应可逆。
图4. 中子对分布函数(neutron pair distribution function, nPDF)研究P2-Na0.72[Li0.24Mn0.76]O2在充放电过程中的结构变化 (a-d) 不同SOC的nPDF结果拟合;(e) 不同SOC的nPDF结果以及理论结果对比;(f) 根据nPDF拟合结果的不同SOC的O-O键长的变化;(g) P2-Na0.72[Li0.24Mn0.76]O2的结构演变示意图。
除此之外,由于首周充电电荷补偿全部由氧提供,这就减小了相邻氧层的静电排斥作用,进而抵消由于钠离子脱出而减弱的静电屏蔽效应,从而在充电末仍然稳定了P2型层状结构,且减小了体积应变。
该研究的亮点在于:
① 首次报道了具有270 mAh/g可逆比容量(700 Wh/kg)的钠离子电池正极材料,该材料在首周充电时容量完全由晶格氧提供;
② 研究发现阴离子氧化还原反应可以抑制P2-O2相变;
③ 研究发现阴离子氧化还原反应可以减小材料的体积应变。
图5. 颗粒表面局部结构的变化
该研究证明阴离子氧化还原反应在钠离子电池中的现象与锂离子电池中有着较大差别,如何通过某些方式在钠离子电池中完全稳定住阴离子氧化还原反应,是下一重点研究目标,如能达成,将会给钠离子电池的发展带来新的契机。
文章信息:Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; Li, H.; Huang, X.; Yang, X.; Delmas, C.; Chen, L., Anionic Redox Reaction Induced High-Capacity and Low-Strain Cathode with Suppressed Phase-Transition, Joule 2018, DOI: 10.1016/j.joule.2018.10.022.
原创文章,作者:菜菜欧尼酱,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2023/11/28/3c8de37bf7/