​Angew:极端工作条件下锂-硫电池的部分离子对溶剂化结构设计

​Angew:极端工作条件下锂-硫电池的部分离子对溶剂化结构设计
​Angew:极端工作条件下锂-硫电池的部分离子对溶剂化结构设计
在极端工作条件下提高能量密度仍然是充电电池面临的一大挑战。在此,加州大学圣地亚哥分校陈政团队展示了一种全氟酯类电解质,由部分氟化的羧酸酯和碳酸酯组成。这种电解质具有耐高温的物理化学特性和适度的离子对溶解,从而在单一电解质中形成了一半溶剂分离离子对和一半接触离子对。因此,在不影响离子电导率(即使在 -40 ℃ 时也大于 1 mS cm-1)的情况下,实现了以 LiF 为主的界面阴离子/含氟助溶剂的去溶剂化和优先还原。
研究发现,即使在极端工作条件下,这些优势特性也适用于锂金属电极和硫电极,从而使具有高 SPAN 负载(> 3.5 mAh cm-2)和薄锂负极(50 µm)的锂-硫化聚丙烯腈(SPAN)全电池能够在 -40、23 和 50 ℃ 下稳定循环。
​Angew:极端工作条件下锂-硫电池的部分离子对溶剂化结构设计
图1. 电解质设计
总之,该工作开发出了一种全氟酯类电解质,其中包括部分氟化的羧酸酯和碳酸酯,适用于在极端温度下运行的高面载Li-S 全电池。研究表明,与不含氟的同类电解质相比,部分含氟的羧酸酯和碳酸酯溶剂体系中的Li+/阴离子和Li+/氟化共溶剂结合力更强。这种具有半阳离子/阴离子对的全氟化电解质,即使在很宽的温度范围内,也能在不影响离子导电性的情况下,实现轻松去溶剂化和以 LiF为主导的界面。
因此,该项工作为优化未来的电化学装置确立了新的设计原则,使其在宽温度范围内具有可调的盐解离和溶剂去溶剂化特性。同时它还为设计耐高温电解质提供了一条可行的途径,以支持在极端条件下工作的高能量密度充电电池。
​Angew:极端工作条件下锂-硫电池的部分离子对溶剂化结构设计
图2. 极端条件下的全电池测试
Partially Ion-Paired Solvation Structure Design for Lithium-Sulfur Batteries under Extreme Operating Conditions, Angewandte Chemie International Edition 2023 DOI: 10.1002/anie.202316786

原创文章,作者:wdl,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2024/01/11/2c3edc7181/

(0)

相关推荐