上交Nat. Commun.: 酮协同蒽醌,促进碱性条件下H2O2光合成 2024年5月17日 上午11:30 • 顶刊 • 阅读 32 过氧化氢(H2O2)在生物医学、消毒、漂白、有机合成和水处理方面有着广泛的应用。工业上生产H2O2的方法是蒽醌法(AQ),该法能耗高Q且废物排放量大。作为一种绿色、碳中性的替代方案,太阳能驱动的分子氧(O2)和水(H2O)合成H2O2的氧还原策略受到越来越多的关注。尽管许多光催化剂对于H2O2的合成表现出高活性,但是大量的有机牺牲剂(如异丙醇)往往被用来清除光生空穴和提供氢源,这会带来杂质以及增加H2O2的合成成本。与有机牺牲试剂相比,水是便宜和易获取的氢源,但水分子的高O-H键解离能(BDE,492 kJ mol−1)使得其本质上是一个很差的氢供体。因此,仅利用分子氧和水进行高效H2O2光合作用具有重要意义,但仍然是一个巨大的挑战。 近日,上海交通大学张礼知和龙明策等通过机械化学策略合成含有COF的酮式蒽醌(kf-AQ),其在碱性水中表现出高效的H2O2光合成活性。实验结果表明,在可见光(λ>400 nm)照射下,kf-AQ在pH值为13时的H2O2产率高达4784 μmol h-1 g-1,H2O2生产速率常数为31.39 μM min-1;同时,该材料的H2O2产率在五个反应循环中保持恒定,反应后其结构和表面官能团没有发生变化,表现出良好的稳定性。此外,研究人员用NaCl和KOH取代NaOH,排除了Na+对提高H2O2产量的贡献,证实了OH−对kf-AQ的H2O2光合作用具有重要的促进作用。 基于原位光谱和理论计算,揭示了kf-AQ中酮和蒽醌部分的协同作用对于光催化O2和H2O合成H2O2的优越性。最初,OH−(H2O)n团簇优先吸附在kf-AQ的酮式结构上,通过形成H-OH(H2O)n-1OH−团簇弱化末端H2O的H-O键,促进了水分子的脱氢反应。在可见光照射下,kf-AQ上的表面H3O+可被界面电子(e−)还原释放H*ads物种,其优先与AQ中的醌基团(-C=O)结合,氢化AQ生成蒽醌(H2AQ);之后,H2AQ的仲氢原子被提取出来产生自由基,自由基与O2反应生成1,4-内过氧化物物种,这是形成H2O2的关键中间体。 1,4-内过氧化物物种与H2AQ中的氢偶联并释放H2O2。同时,另一种解离产物OHads中间体在界面层内不会被解离为OH−,而是形成吸附的羟基-水-碱金属阳离子簇(OHads-Na+-(H2O)n)。在可见光照射下,光生空穴(h+)通过4e−WOR途径氧化OHads生成O2。因此,在高pH条件下,在kf-AQ上形成的OHads-Na+-(H2O)n和H3O+中间体有利于水的氧化和H2O分子的氢提取,从而实现高效的光催化H2O2生产。 Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water. Nature Communications, 2024. DOI: 10.1038/s41467-024-47023-y 原创文章,作者:计算搬砖工程师,如若转载,请注明来源华算科技,注明出处:https://www.v-suan.com/index.php/2024/05/17/3383fea03c/ 赞 (0) 0 生成海报 微信扫码分享 相关推荐 EES:参考309篇文献讲述废旧锂电池的环境影响、污染源和途径 2023年10月14日 电池顶刊集锦:支春义、余彦、马建民、徐吉静、田雷、成会明等成果精选! 2023年10月8日 AFM:酸性!碱性!调控表面密度的金属纳米团簇能实现高效全水解! 2023年10月11日 三单位联合Nano Letters:溶剂调节MOF的晶面,实现CO2电还原为C1和C2+产物 2024年2月24日 詹孝文/高山/张朝峰AFM:自形成氟化界面提升固态电解质4倍临界电流密度! 2023年10月13日 天大Small: 促进NiFe-LDH催化海水电解的高耐蚀性,PO43-功不可没! 2022年11月24日